The Impact of Tropical Classroom Facade Design Alternatives on Daylight Levels and Cooling Energy Consumption

Sureepa Supansomboon1 Steve Sharples2
[The University of Liverpool] [The University of Liverpool]
s.supansomboon@liverpool.ac.uk steve.sharples@liverpool.ac.uk

ABSTRACT
In educational buildings the use of daylight may not only improve students’ learning performance but can also reduce electric lighting energy consumption. However, in tropical climates allowing daylight in to rooms can also create a potential overheating risk and increased cooling energy requirements in order to achieve thermal comfort. In this study an actual educational building located in Thailand was investigated using the DesignBuilder modelling package. Daylight levels in several classrooms were measured in order to check the validity of DesignBuilder predictions. A series of classroom façade design alternatives were then investigated by modelling them and analyzing their influence on visual and thermal comfort and cooling energy requirements in each classroom. The aim of the study was to suggest optimized design solutions that created good daylight levels in classrooms but without excessive cooling energy requirements. Some of the different façade designs were found to perform adequately in terms of light levels but poorly in terms of cooling energy usage. Parametric studies such as this one can inform the solution concept and facilitate decision making for designers at the preliminary stages of a design. This paper suggests some façade solutions that could be applied generally to classroom design in tropical regions to achieve a good compromise between daylight access and thermal comfort.

INTRODUCTION
Many studies, such as Altomonte (2009), have confirmed the positive effect of natural light on human visual quality and psychological well-being. There is some evidence, for example Halliday (2008) and Lee et al. (2012), on the advantage of daylight to student learning performance. Results from Theodorson (2009) appear to support this idea by suggesting that good views of the outside world are associated with an improvement in student performance. Although the National Research Council (2006) pointed out that the evidence was too limited, it concluded that a classroom without a window can create stress in students. Windows in façades which directly provide daylighting are, therefore, necessary and desirable in classrooms.

Research background
The provision of natural light to rooms in hot-humid climates leads to two major issues - thermal discomfort and visual quality. Correct façade design is one of the significant solutions to optimizing daylight use in buildings. This research aims to investigate the influential parameters of façade design and to recommend some design guidelines. In this paper the influence of window area and overhang depth on classroom illuminance levels, thermal comfort and cooling energy consumption were examined.

Literature review and research questions
For both human and visual comfort, several façade design strategies have been investigated by researchers – for example, Aksamija (2013). There strategies include glazing type, window size, window orientation and window shading. In terms of thermal performance, Perez and Capeluto (2009) stated that glazing type, window size and orientation have very high impacts while window shading has a high impact on energy consumption. Zurigat et al. (2003) also presented some relevant results. Compared to other strategies, shading devices seem to have low impact on cooling load. However, cooling load could be reduced by up to 11% when shading devices were applied. Window shade consequently was recommended to be an additional strategy to lessen cooling load. Concerning other factors, Catalina and Iordache (2012) argued that window size does not have a major influence on operative temperature. In daylighting research some studies were found to be useful for facilitating design decisions but, generally, most studies focused on one specific daylighting aspect. There is a lack of literature that attempts to integrate façade parameters, daylighting and thermal issues. When considered separately, it is obvious that for glazing type and window size then the higher the light transmittance and the larger the window area then the higher the prevailing daylight levels. Similarly, less window shading helps more natural light into the room. However, those strategies are probably not proper solutions. Their expected negative outcomes may consist of excessively high light levels and direct sunlight can bring about visual discomfort or disability glare. Because of glare and disturbance the USA’s National Research Council (2006) pointed out that natural light can cause negative effects on student performance, particularly when direct sunlight enters the classroom.

Dubois (1992) partly disagreed by claiming that unless directly facing a window, occupants were rarely influenced by direct sun or glare. The significance of shading devices for daylighting was affirmed by Dubois (2001), who implied that just changing occupants’ position and vision may not be the right solution. The optimization of those façade design parameters for improving and controlling light levels is still an important question. A southwest facing façade, as one of the orientations which is largely dominated by low sun altitudes, was chosen in this study for assessing the impact of window size and shading. Overhangs were initially studied not only because of their simplicity but also because overhang investigations by Dubois (2001) suggested that they were probably suitable for horizontal visual tasks as they provided sufficient illuminance. At this stage other influential factors, such as glazing type, and other potential components, such as light shelves, were not included in this study. In addition, lighting control systems may, as suggested by Perez and Capeluto (2009), have a high impact but are required to be combined with other façade parameters.

Research methodology
As an example of typical classrooms in Thailand, some classrooms in the Faculty of Architecture, Mahasarakham University were investigated using the DesignBuilder software. Twelve façade variations of window areas and overhang were applied to the representative classroom model, which was oriented to the southwest. Window area parameters consisted of (i) no window, (ii) existing window and (iii) glazed wall with percentages of glazing varying as: 0%, 31.5% and 100% (fully glazed wall). The parameters of overhang depth were (i) no overhang, (ii) existing overhang with a 2.1 metre depth, (iii) existing overhang with 4 metre depth and (iv) 7 metre depth overhang with percentage depth varied as: 0%, 30%, 57% and 100% (7 m depth), respectively. In addition, the two opposite fully glazed cases were included in order to examine the influence of the façade in the opposite sides of the room. The study focused on predictions of total cooling load (kW), Fanger PMV comfort scores, average maximum illuminance and daylighting distribution. These parameters were simulated hourly during the building’s working hours for weekdays. Two other indicators were considered: the illuminance ratio (highest to lowest illuminance ratio in room) and the percentage of classroom positions where illuminance levels met a stated standard. Cantin and Dubois (2011) recommended the Useful Daylight Illuminance (UDI) as a practical indicator. The UK’s Department for Education and Employment (1999) recommended classroom light levels of 300-500 lux, and an upper threshold of UDI of 2,000 lux was chosen. CIBSE (1994) recommended 1:10 as an illuminance ratio between the task and more remote lighter surfaces, but Cantin and Dubois (2011) pointed out that this appears too strict. They suggested instead the ratios of 1:20 and 1:50 as acceptable and tolerable ratios. In this paper these three ratios will be applied as recommended, acceptable and tolerable limits. Apart from simulation modelling, the case study school was also surveyed. The daylight level measurements and occupants’ satisfaction survey were completed for validating the prediction and studying actual problems.

PROBLEM MONITORING OF THE CASE STUDY
Supansomboon and Sharples (2013) reported results of the survey, which was done during June 2011. The satisfaction survey and the measurement are concordant in terms of insufficient illuminance levels. The participants raised a variety of problems regarding variations in light levels which can decrease their effectiveness in all visual tasks. The measurements also showed that the differences in maximum and minimum illuminance and luminance values were considerably higher than design recommendations. One of the crucial causes was the influence of direct sunlight entering the room. In addition, it was also found that, although the majority of classroom users agreed with the advantage of applying natural light, their actual behavior...
appeared to rarely use daylight. This was due to the fact that the natural light is generally fluctuating and the existing shading devices are not only inadequate for preventing direct sunlight but also difficult to operate. These results reveal that the existing classroom façade might not be suitable for daylighting. Adjustment of the façade appears to be necessary to solve fluctuation of the daylight and optimise the different visual task requirements.

DAYLIGHT LEVELS

Daylight level distributions for sidelighting generally display a common pattern. The illuminance is maximum in the area next to the window and then reduces dramatically with distance from the window into the rear area. For the case study, when illumination levels were collected during the period of summer solstice, on average, this pattern was observed. However, the average illuminances did not meet the recommended standard of 300-500 lux for all measured positions. When measurement positions were considered separately, the daylight levels of the mid position and the furthest position had no significant change. Conversely, illuminance levels in the position next to the window did vary with time. Illuminance levels were, on average, about 250 lux in the morning and increased to a peak value of about 350 lux at 2.00 pm and then reduced until the end of working hours. The minimum illuminance was about 120 lux. The results suggest that the daylight levels are insufficient at all working times.

Validation of illuminance predictions

The sky was classified to be partly cloudy sky but the percentage of cloud in the sky varied. When the measurements and predictions were compared, it was found that none of sky conditions provided in the DesignBuilder lighting module had exactly the same pattern as occurred during the measurements. However, two sky conditions were accepted that could represent minimum and maximum illuminances. In term of pattern similarity, the sunny clear sky condition is the condition that matches the peak illuminance at approximately 2.00 pm. The illuminances at the mid and the furthest positions from the window were, on average, close to the measurement values. The lowest illuminances were predicted for the overcast sky. At the position next to the window, the value was near the average illuminance of the measurements.

Influence of time and season

The predictions for the exiting façade model under a sunny clear sky are shown in Figure 1, and suggest that illuminance ratios are normally acceptable in the morning, excluding 27th of April and 22nd of December. In the afternoon, the ratios increase to be tolerable in general but beyond tolerable limits for 27th April, and the 22nd of December, March and September. Excessively high illuminance ratios occurred on 22nd of December, March and September, and this can be assumed to be due to the influence of direct sun ingress. In terms of illuminance distribution, there were more than 50% of classroom positions where the illuminance levels did not meet the recommendations. The majority of the positions experienced less than 300 lux. Interestingly, the cases where illumination levels mostly met the recommendations were the times when the sun’s influence was most evident. It can be concluded that the classroom with the existing façade might require additional illumination in general. The direct sun may cause excessively high illuminance levels and unbearable illuminance ratios in the area next to the window at some specific times in the afternoon but it can also bring about useful amounts of daylight in the rest of the room. However, it was noted that applying the sunny clear sky conditions gave predictions that appeared to overestimate daylight levels, particularly at the position beside the window.

Comparison of illumination levels in different façade types

For overcast sky predictions, most daylight levels did not meet the recommendations. However, it is obvious from Figure 2 (b) that the greater the overhang depth then the lower the daylight levels. For illuminance ratios shown in Figure 2 (a), the classroom with the existing window had excessively high illuminance ratios for all overhang depths, while the ratios for all cases in both fully glazed wall cases were lower than the tolerance scale. The optimisation cases appear to have the most satisfactory ratios. It was also found that the ratios were all acceptable once the opposite wall of the window had been modified to be fully glazed. Moreover, some of the ratios in this group met the recommendations.
According to Figure 4, illuminance, Fanger PMV and cooling load all increase when the window area increases. The cases without an overhang have the largest rate of increase. The greater the overhang depth, the smaller the increase. Solar radiation affects the classroom in a negative way when the sun is directly overhead. Not only were the Fanger PMV and cooling load values considerably higher, but the illuminances levels were also inadequate in all cases. However, at the winter solstice four useful cases were found with both daylight levels and thermal comfort in the recommended ranges. The ranges of window areas that meet the requirements are 10-35% for the no shading cases, more than 18% for the existing overhang cases and more than 60% for the 4 metre-depth overhang cases.

DISCUSSION AND CONCLUSION

In general, it was found that daylight levels in the classroom were mostly not high enough even though the window area and overhang depth were improved. This problem arose from less daylight level being transmitted to the room and its poor distribution around the room. It is probable that other innovative solutions could increase daylight levels and improve distribution.

The problems can be different if the façade is affected by a low sun altitude, such as at the winter solstice. Agreeing with previous research and the preliminary survey, direct sunlight possibly caused visual dissatisfaction in the classroom. The influence of the direct sun resulted in excessively high daylight levels in the area next to the window and overwhelming illuminance ratio values. This is due to insufficient shading devices for the southwest orientation in the afternoon. It appears that the window shading needs to be improved. On the other hand, when the thermal aspect was combined, the fully glazed wall without an overhang appeared to have excessively high illuminance levels and slightly warm discomfort voting, although high amounts of cooling energy were consumed. The optimal case of an overhang which can completely shade for direct sunlight was not suitable for daylighting. Interestingly, benefits from the direct sun were also found. Apart from the intense illuminance which affected the area next to the window, the low angle of the sun also influenced illuminance levels in the rest of the room. It is possible that this advantage is brought about by reflections of the transmitted solar beams. As a further solution, diffusing the direct solar beam might benefit unaffected areas – for example, using reflection techniques such as lightshelves. It appears that the impact of changing window area, compared to changing overhang depth, was more significant for daylight levels rather than thermal conditions. Their influences were also dependent on each other. In terms of illuminance ratio, the impact of overhang depth will be reduced if a large window is used. Similarly, the impact of window area will be high if there is no shading. It appears that the combination of full glazing on the opposite wall did not have much effect on daylight levels and, instead, resulted in higher heat transfer. However, the results show that this additional window provided more pleasant illuminance ratios. This strategy is, therefore, still useful for reducing variations in daylight distribution.

REFERENCES

